Yuh-Nung Jan (UCSF, HHMI) 1: How Does a Neuron Develop its Neuronal Type Specific Dendritic Morphology?

Yuh-Nung Jan (UCSF, HHMI) 1: How Does a Neuron Develop its Neuronal Type Specific Dendritic Morphology?

Recording date: 18/07/2018
Viewed: 1 time

https://www.ibiology.org/neuroscience/dendrite-morphogenesis Dr. Yuh-Nung Jan outlines the sequence of events that led to the understanding of the molecular underpinnings that drive dendrite morphogenesis. Talk Overview: A dendrite is a tree-like structure in neurons, which receives the incoming signal from adjacent neurons or from sensory stimuli. Dr. Yuh-Nung Jan is interested in understanding the molecular underpinnings that drive dendrite morphogenesis. His laboratory uses the fruit fly larvae as a model organism to study the development of dendritic arborization (da) neurons. Using these neurons, Jan and others have shown that the combinatorial expression of different transcription factors, such as Cut, as well as the interactions between dendrites and between dendrites and epithelial cells is what drives dendrite morphogenesis. In addition, Jan explains the role of Dscam isoforms in the regulation of dendrite-dendrite interactions for proper dendrite patterning. In his second lecture, Jan explains how dendrite morphology relates to the function of neurons. For example, class IV da neurons are photoreceptors and their dendrites form a regular array in the fruit fly larvae to enable the avoidance of noxious signals, like light. On the other hand, class III da neurons are mechanosensors, and they use no mechanoreceptor potential C (NompC) protein to detect gentle touch. Jan and collaborators showed that NompC works by tethering ankyrin repeats to microtubules, providing evidence for the first time that this type of gating mechanosensor mechanism is possible. Speaker Biography: Dr. Yuh-Nung Jan is a Jack and DeLoris Lange Professor of Molecular Physiology at the University of California, San Francisco, and a Howard Hughes Medical Institute Investigator. Jan completed his undergraduate studies in physics at National Taiwan University in 1967. He continued his graduate and postdoctoral training at California Institute of Technology, where he switched from physics to biology. After additional postdoctoral training at Harvard Medical School, in 1979, Jan joined the faculty at the University of California, San Francisco, where his lab studies the development and function of the nervous system, focusing in the mechanisms of dendrite development and dendritic morphogenesis. For his scientific contributions, Jan was elected member of the National Academy of Sciences (1996), the Academia Sinica, Taiwan (1998), and the American Academy of Arts and Sciences (2007). Together with his lifelong collaborator, Dr. Lily Jan, he received the 2017 Vilcek Prize in Biomedical Science. Visit his lab website and learn more about Jan’s research: http://physio.ucsf.edu/Jan/index.html

Yuh-Nung Jan (University of California, San Francisco & Howard Hughes Medical Institute)


to add comments